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a b s t r a c t 

Sparse subspace clustering (SSC) is a state-of-the-art method for partitioning data points into the union 

of subspaces. However, it is not practical for large datasets as it requires solving a LASSO problem for 

each data point, where the number of variables in each LASSO problem is the number of data points. 

To improve the scalability of SSC, we propose to select a few sets of anchor points using a randomized 

hierarchical clustering method, and, for each set of anchor points, solve the LASSO problems for each 

data point allowing only anchor points to have a non-zero weight. This generates a multilayer graph 

where each layer corresponds to a set of anchor points. Using the Grassmann manifold of orthogonal 

matrices, the shared connectivity among the layers is summarized within a single subspace. Finally, we 

use k -means clustering within that subspace to cluster the data points, as done by SSC. We show on both 

synthetic and real-world datasets that the proposed method not only allows SSC to scale to large-scale 

datasets, but that it is also much more robust as it performs significantly better on noisy data and on 

data with close susbspaces and outliers, while it is not prone to oversegmentation. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Finding a low-dimensional subspace which best represents a set

of high-dimensional data points is a fundamental problem in many

fields such as machine learning and signal processing. In fact, di-

mensionality reduction is an essential tool for understanding and

preprocessing data sets. Using the assumption that the data points

have fewer degrees of freedom than the ambient high dimension,

several methods were developed to discover the underlying low-

dimensional structure. Principal component analysis (PCA) is the

most popular method for this matter [1] . However, the classical

methods neglect the fact that the data set often contains data of

different intrinsic structures. For example, facial images of multiple

individuals under varying illumination conditions belong to multi-

ple manifolds/subspaces and should be approximated by multiple

subspaces instead of one [2] . This leads to a more general problem

often referred to as subspace clustering that has attracted much at-

tention recently. It generalizes the classical PCA in order to model

data belonging to multiple subspaces; see, e.g., the survey [3] and

the references therein. 
∗ Corresponding author. 
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Formally the subspace clustering problem can be defined as

ollows: given a set of N data points X = { x i ∈ R 

d } N 
i =1 

from the

nion of n unknown subspaces S 1 , S 2 , . . . , S n with unknown intrin-

ic dimensions d 1 , d 2 , . . . , d n ( d i < d for all i ), the goal is to parti-

ion/cluster the data points according to their underlying subspaces

nd estimate the subspace parameters corresponding to each clus-

er. 

Over the past two decades, many methods have been pro-

osed to deal with this problem. They are usually classified in

our categories [3] : iterative, statistical, algebraic and spectral-

ased methods. Iterative methods [4–6] formulate the problem as a

on-convex optimization problem and optimize it using a two-

tep iterative approach, similarly as k -means: Given an initial clus-

ering, alternatively (i) calculate a basis for each subspace, and

ii) assign each point to the closest subspace. Despite being sim-

le and intuitive, the convergence is only guaranteed to a local

inimum and it is highly sensitive to noise and outliers. Statis-

ical approaches [7,8] treat the problem as modeling the data with

ixture of Gaussian distributions. Similar to iterative methods, sta-

istical methods are sensitive to noise and outliers. The algebraic

ethods [9,10] fit a set of polynomials to the data points using an

lgebraic and geometric reformulation of the problem. However,

ot only the methods in this category are sensitive to noise and

utliers but also they do not scale well with the increase of the

imension of the data points. Spectral-based methods are inspired

https://doi.org/10.1016/j.sigpro.2019.05.017
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y classical spectral clustering techniques [11,12] based on using

he spectrum of a specially constructed similarity matrix from the

ata points. The main difference between methods in this category

s in the way the similarity matrix is constructed. Global spec-

ral based approaches such as spectral curvature clustering (SCC)

13] tend to construct better similarity matrices (at the expense

f a higher computational cost and more sensitivity to noise) com-

ared to local based alternatives [14,15] . However, with advances in

parse representations (see, e.g., [16] and the references therein),

 new set of methods has attracted a lot of attention within the

pectral-based approaches. The key idea is that each data point can

e expressed as a sparse linear combination of other data points

ithin the same subspace. A property which is often referred to as

elf-expressiveness . Three main representative methods in this cat-

gory are sparse subspace clustering (SSC) [17,18] , low-rank repre-

entation based clustering (LRR) [19,20] , and least square regres-

ion (LSR) [21] . All three approaches are based on the following

odel: 

min 

∈ R N×N ,E∈ R d×N 
f (C) + λg(E) 

such that X = XC + E and C i,i = 0 for all i, (1) 

here X ∈ R 

d×N is the input matrix whose columns are the data

oints, E ∈ R 

d×N is the noise, and C ∈ R 

N×N is the coefficient ma-

rix. The function f (.) is 

• the component-wise � 1 norm || C|| 1 = 

∑ 

i, j | C i, j | for SSC which

enhances the sparsity of C (a LASSO problem), 
• the nuclear norm || C || ∗ for LRR, that is, the sum of the singular

values of C , which enhances C to be of low-rank, and 

• the Frobenius norm || C || F = 

∑ 

i, j C 
2 
i, j 

for LSR which enhances C

to have low energy (this usually does not lead to sparse nor

low-rank solutions, but it is computationally much cheaper as

the solution can be written in closed form). 

The function g is a regularization function that is used for mod-

ling the noise (usually based on the � 1 or the Frobenius norm).

he solution C to (1) provides crucial information about the links

etween the data points: C i,j � = 0 means that the data points i and

 share some information hence it is likely they belong to the

ame subspace. These methods then apply spectral clustering on

he graph corresponding to the adjacency matrix | C| + | C| T . Note

hat an important strength of these methods is that they do not

eed to know the dimensions d i ’s of the subspaces, and can esti-

ate the number of clusters as done by spectral clustering (looking

t the decay of the eigenvalues of the Laplacian of the adjacency

atrix). 

SSC has strong theoretical guarantees in noisy and noiseless

ases for both independent and disjoint subspaces [18,22–24] . The

ehavior of LRR in the presence of noise and disjoint subspaces

s still not well understood [25] . LSR is computationally less de-

anding compared to SSC and LRR, but it is guaranteed to pre-

erve the subspaces only when they are independent. Despite the-

retical guarantees and empirical success of SSC, optimizing the

orresponding LASSO problems is not practical for large real-world

ata sets with more than 10,0 0 0 samples, the bottleneck being the

esolution of the large-scale convex optimization problem (1) (al-

hough it can be decoupled into N independent LASSO problems),

ith a computational cost of �( N 

2 ) operations. To overcome this

ssue, we propose a new scalable approach, referred to as scalable

nd robust SSC (SR-SSC), based on solving several problems of the

orm (1) but where only a few rows of C are allowed to be non-

ero (using a randomized subsampling of anchor points) in order

o generate a multilayer graph that we merge using the technique

rom [26] . The computational cost is linear in N so that SR-SSC can

cale to much larger data sets. 
.1. Outline and contribution 

The main contribution of this paper is to propose a novel scal-

ble approach that extends SSC for clustering large-scale data sets.

he two key ingredients of this novel method are (i) a random-

zed hierarchical clustering algorithm that allows to identify differ-

nt sets of anchor points that are good representatives of the data

et, and (ii) a multilayer graph technique that summarizes the in-

ormation across several graphs on the same vertices. As we will

how, our method significantly improves the performance of SSC

n the challenging cases of noisy and close subspaces, and over-

hadows the oversegmentation issue of SSC. 

The paper is organized as follows. In Section 2 , we briefly re-

iew and discuss the related works proposing scalable SSC-like

ethods. In Section 3 , we present a new approach that makes SSC

calable to large data sets and is more robust, which we refer to as

calable and robust SSC (SR-SSC). We investigate the properties and

erformance of SR-SSC using synthetic and real-world data sets in

ection 4 . Section 5 concludes the paper. 

. Related works 

Several methods in the literature have already addressed the

calability of SSC. One of the earliest attempts is the method re-

erred to as scalable SSC (SSSC) [27] that applies SSC on a ran-

omly selected subset of data points and assigns the rest of the

ata points based on the obtained clusters. This approach is very

ensitive to the selection method, and suboptimal because the data

oints which were not selected are not taken into account for gen-

rating the clusters. 

In [28] , instead of solving the LASSO problems (1) , authors use

 greedy algorithm, namely orthogonal matching pursuit (OMP), to

btain the sparse representation for each data point. Even though

MP is faster than the original � 1 -based SSC and is scalable for up

o 10 0,0 0 0 samples, it is a greedy method with weaker theoretical

uarantees [28,29] . Also, the computational cost is still high, re-

uiring O ( N 

2 ) operations. In each iteration of OMP to approximate

 given data point, the residual is orthogonal to all previously se-

ected data points. This property enforces constraints on sampling

istribution in each subspace [30] . Furthermore, OMP tends to par-

ition subspaces into multiple components (oversegmentation is-

ue) [31] . 

Mixture of � 1 and � 2 norms was used in [32] to take advantage

f subspace preserving of the � 1 norm and the dense connectivity

f the � 2 norm. Later in [33] , an oracle-based algorithm, dubbed

Racle Guided Elastic Net solver (ORGEN), was proposed to iden-

ify a support set for each sample efficiently. However, in this ap-

roach, a convex optimization problem is solved several times for

ach sample which can limit the scalability of the algorithm. Be-

ides, to the best of our knowledge, there is no principled method

o choose the regularization parameters in ORGEN which has a sig-

ificant role in the trade-off between � 1 (subspace preserving) and

 2 (connectivity). 

More recently, a nearest neighbor filtering approach

KSSC) [34] was presented to choose the support set for each

ample more efficiently compared to ORGEN. In this approach, the

ASSO problem in SSC is restricted to the K nearest neighbors cho-

en as support set for each point. Even though authors provided

ome theoretical guarantees for correct connections in noisy and

oiseless cases, this approach requires to find the nearest neigh-

ors for each point which requires O ( N 

2 ) operations. Additionally

his approach is very likely to oversegment the subspaces. Let us

llustrate this with a simple example similar to that in [35] (we

ill use a similar example in Section 4 ). Suppose 8 m points are

hosen around four circles in a 4-dimensional subspace as follows:
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the columns of the input matrix X are of the form 

[ cos θk , sin θk , sδ, s 
′ δ] T , 

where k = 0 , 1 , . . . , 2 m − 1 , θk = 

πk 
m 

, s, s ′ ∈ {−1 , 1 } and δ ∈ R . Let us

denote x i the i th column of X ( i = 1 , 2 , . . . , 8 m ). The symmetrized

convex hull of the columns of X is defined as 

P X = con v ( ±x 1 , ±x 2 , . . . , ±x 8 m 

) . 

Solving (1) is equivalent to finding the extreme points of the clos-

est face of the polytope P X for each (normalized) data point [36] . It

can be proved that by choosing a sufficiently large value for m , the

vertices corresponding to closest face to the point [cos θ k , sin θ k ,

s δ, s ′ δ] T are [35] : 

[ cos θk ±1 , sin θk ±1 , sδ, s 
′ δ] T , [ cos θk , sin θk , −sδ, s ′ δ] T , 

and [ cos θk , sin θk , sδ, −s ′ δ] T . 

Depending of m , the value of δ can be chosen large enough so

that the K nearest neighbors are [ cos θk + � , sin θk + � , sδ, s ′ δ] T where

� = 1 , −1 , 2 , −2 , . . . . This leads to the following four disjoint com-

ponents for the subspaces (4 subspaces of dimension 2), even in

the noiseless case: {
[ cos θk , sin θk , sδ, s 

′ δ] T 
}2 m −1 

k =0 
with s, s ′ ∈ {−1 , 1 } . 

This is due to the fact that nearest points do not necessarily con-

tain all the vertices of the closest face in the polytope. This ob-

servation is well-supported by sparse representation literature as

well, where several screening rules based algorithms [37,38] were

proposed to predict the active support set for each data point in

the LASSO optimization problem. More recently, [39] used sketch-

ing to speed up SSC, LRR and LSR, but their approach sacrifices

accuracy for efficiency. 

As a conclusion, we see that there is a need for an efficient al-

gorithm that is computationally cheaper than SSC, ideally running

in O ( N ) where N is the number of data points, while not worsening

its weaknesses. In the next section, we present an approach that

selects anchor points randomly and a framework that can compen-

sate for possible inaccurate selection. As we will see, the proposed

approach is not only scalable but more robust than SSC and not

prone to oversegmentation. 

3. Robust and scalable sparse subspace clustering algorithm 

using randomized clustering and multilayer graphs 

In order to keep the good performances of SSC while reducing

the computational cost, we propose an approach in which a small

number of samples is chosen as anchor points so that only a few

rows of C are allowed to be non-zero in (1) , similarly as for the

methods presented in Section 2 . Clearly, the choice of the anchor

points plays a critical role. Moreover, the computational cost of the

method for choosing the anchor points should be low otherwise

there would be no gain in throwing away the rest of the points

(in particular, picking the K nearest neighbors is rather expensive;

see the discussion in the previous section). However, choosing the

anchor points with no prior knowledge is a difficult task. To re-

duce the role of the anchor points, we propose a new framework

which constructs a multilayer graph based on several sets of well-

chosen anchor points using randomization. The details of the two

key steps are discussed in the following two sections, namely the

selection of the anchor points and the summarization of the mul-

tilayer graph. 

3.1. Selection of the sets of anchor points via randomized hierarchical 

clustering 

In this section, we describe the proposed method for se-

lecting the sets of anchor points in the data set. Classical ap-
roaches such as k-medoids [40] and affinity propagation-based al-

orithms [41,42] have quadratic time complexity which limits their

pplications for large-scale problems. Another group of algorithms

elect the anchor points using the low-dimensional structure of the

ata. These methods assume the data lies on one or multiple low-

imensional subspaces. The rank revealing QR and similar meth-

ds [43,44] select the samples such that the resulting submatrix is

ell-conditioned. There are also randomized methods that select

andidates using a concept known as leverage scores. These scores

re proportional to the � 2 norm of the rows of the right singular

ectors of the data matrix. Some approaches select the columns

ith highest scores [45] but it is more common to use these scores

o form a biased probability distribution [46] (that is, sampling the

olumns using a nonuniform probability distribution that depends

n the calculated leverage scores). Apart from the time consuming

VD factorization (to obtain the right singular vectors), it is possi-

le to have a considerable amount of redundancy in the final set.

oreover, to reach the theoretical guarantees of these approaches,

t is recommended to repeat the algorithm around 40 times which

akes it impractical for large-scale problems [44] . Another class

f method uses convex relaxations [47,48] but these methods re-

uires the introduction of N 

2 variables and are impractical for our

urpose. Hence to the best of our knowledge, there is currently

o approach that can select samples from a data set that lies on

 union of subspaces in a reasonable amount of time. Instead of

electing the anchor points fully randomly as done in [27] , we se-

ect them in a way so that they are well-spread in the data set,

hat is, they are good representatives of the data points. To do so,

 simple randomized top-down hierarchical clustering technique is

sed. It works as follows. We construct a tree structure and start

ith a single root node which contains all the data points (with

o clusters/partitions). Each node in this tree structure is a collec-

ion of data points. Let the data point that is closest to the average

f data within node be the centroid of that node. Centroid can be

onsidered as representative data point of each node. Then at each

tep, we 

1. Select the node whose sum of the squared Euclidean distances

between the data points it contains and their centroid is the

largest. Let us use I to denote the set of indices of the data

points corresponding to this node. 

2. Split this node as two child nodes as follows: 

(a) Generate randomly a vector v ∈ R 

d (we used the Gaussian

distribution N (0, 1) for each entry of v ), 

(b) Project each data point x i within the current node onto the

one-dimensional subspace spanned by v , using the inner

product with v , that is, compute, v T x i for i ∈ I . 

(c) Choose a threshold δ so that the child nodes 

I 1 (δ) = { i | v T x i > δ, i ∈ I} and 

I 2 (δ) = { i | v T x i ≤ δ, i ∈ I} 
satisfy two properties: they are well-balanced (that is, they

contain roughly the same number of data points) and sta-

ble (that is, modifying δ slightly does not modify the two

child nodes significantly). To do so, we use the technique

proposed in [49] using a simple way to quantify each prop-

erty: the fact that the nodes are well-balanced is measured

using F (δ) = 

| I 1 (δ) | 
| I| which should be close to 1 

2 , where | · |

indicates the cardinality of a set, and the stability is mea-

sured using 

G (δ) = 

1 

| I| ( ̄δ − δ) 

∣∣{x i | δ ≤ v T x i ≤ δ̄, i ∈ I 
}∣∣

where δ̄ = min (1 , δ + 

ˆ δ) , δ = max (0 , δ − ˆ δ) , and 

ˆ δ is a small

parameter (we used 0.01 as suggested in [49] ). To have
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Algorithm 2: ADMM for (2) for dictionary-based SSC. 

Input: X ∈ R 

d×N , � as the indices of the k column of the 

dictionary, parameters λ
Output: Approximate solution to the problem 

min C∈ R k ×N || C || 1 + 

μ
2 || X − X(: , �) C || 2 

F 
. 

1: Initialization: C = A = � = 0 , 

D = X(: , �) , μ = 

λ
max j,i � =�( j) | d T j x i | 

, ρ = λ

2: while some convergence criterion is not met do 

3: A ← 

(
μD 

T D + ρI k 
)−1 

(μD 

T X + ρC − �) 

4: C ← T 1 ( A + �/ρ) 
stable clusters, G ( δ) should be close to zero, that is, mod-

ifying δ should not transfer many data points from one

node to the other. 2 Finally, δ is chosen such that H(δ) =
− log 

(
F ( δ) ( 1 − F ( δ) ) 

)
+ G (δ) 2 is minimized. Of course,

many other choices are possible for H ( δ), but the overal al-

gorithm is not too sensitive to this choice as long as both F

and G are taken into account. In fact, we have observed for

example that choosing H(δ) = F (δ) which simply makes the

child nodes have the same number of data points (up to one

if | I | is odd) does not perform as well. 

he construction of this tree is continued until the number of leaf

odes in the tree reaches the number k of anchor points needed. In

ach node, we select an anchor point which is the data point that

s the closest to the average of the node, that is, to the centroid

f the node. The randomized algorithm for selecting the anchor

oints is summarized in Algorithm 1 . 

Algorithm 1: Randomized algorithm for selecting anchor 

points. 

Input: Data matrix X ∈ R 

d×N , and the desired number of 

anchor points k . 

Output: k anchor points as the columns of the matrix 

D ∈ R 

d×k , and the set � containing their corresponding 

indices in X . 

1: Initialization: Construct a tree structure with a single (root) 

node and set the data points contained this node to 

I = { 1 , . . . , N} . 
2: while the number of leaf nodes is less than k do 

3: Select the node to split: the one with the maximum 

sum of squared Euclidean distances between its data 

points and its centroid. 

4: Generate a random vector v ∈ R 

d and project the data 

points within the selected node onto vector v . 
5: Select the threshold δ such that 

H(δ) = − log 
(
F ( δ) ( 1 − F ( δ) ) 

)
+ G (δ) 2 is minimized. 

6: Create two child nodes with I 1 (δ) = { i | v T x i > δ, i ∈ I} 
and I 2 (δ) = { i | v T x i ≤ δ, i ∈ I} . 

7: Select the closest data points to the average of the data 

points in I 1 and I 2 as the centroids of the corresponding 

nodes respectively and store their values and indices. 

8: end while 

9: Set the centroids of the final k leaves as the columns of the

matrix D , and their corresponding indices as the set �. 

The computational cost to split a node with N points in dimen-

ion d is O ( Nd ) operations (the most expensive step is to compute

he inner products v T x i for all i ). To extract k anchors points, the

verall procedure hence require at most O ( kNd ) operations. How-

ver, unless there are very unbalanced clusters in the data set, each

hild node will contain roughly half the data points of its parent

ode so that the expected computational cost is actually rather

 (log ( k ) Nd ) operations in practice (splitting all the nodes of a sin-

le level of the tree requires O ( Nd ) operations since each level con-

ains all the data points, and there will be O (log ( k )) levels in most

ases). 

The idea of random projection is, we believe, a key step of SR-

SC because it has the following three key properties that will
ake it successful: 

2 For stable clustering, ideally, no data point should be in the small interval de- 

ned by [ δ, ̄δ] so that 
∣∣{x i | δ ≤ v T x i ≤ δ̄, i ∈ I 

}∣∣ = 0 hence G (δ) = 0 . In fact, G ( δ) 

ounts (and normalizes) the number of points that belong to this interval. The 

loser this value is to zero, the less data points are in the interval and hence, the 

ore stable the clustering is. 
1. It selects anchor points that are good representatives of the

data set since they are located nearby centroids of clusters that

were generated in such a way that distant points are more

likely to be in different clusters than nearby points. 

2. It is computationally efficient, requiring in general O (log ( k ) Nd )

operations to identify k anchor points. 

3. It generates different sets of anchor points, which is essential

for our multilayer graph strategy described in the next section. 

For example, using random sampling performs worse because it

oes not satisfy the first property above; see Section 4 where we

lso compare our approach to existing algorithms from the litera-

ure. Further research includes the design of other approaches to

erform the selection of anchor points retaining these three prop-

rties. 

.2. Construction and summarization of the multilayer graph 

Choosing the number of anchor points depends on many fac-

ors: the number of subspaces and their dimensions, the affinity

etween subspaces, the distribution of data points in each sub-

pace, and the level of noise. Hence choosing a single set of ‘good’

nchor points, as done for example in [27] , is highly non-trivial. To

everage this difficulty, we propose to choose several sets of differ-

nt anchor points, as described in the previous section. Let us se-

ect L sets of k anchor points in the data sets, with indices �( j ) ( j =
 , 2 , . . . , L ), and construct L dictionaries { D 

(i ) = X(: , �(i ) ) ∈ R 

d×k } L 
i =1 

note that we could select a different number of anchor points in

ach set, but we do not consider this case for simplicity). Simi-

arly to SSC but only allowing anchor points to have a non-zero

eight, we compute the set of sparse representation coefficients

 C (i ) ∈ R 

k ×N } L 
i =1 

by solving 

min 

C (i ) ∈ R k ×N 
|| C (i ) || 1 + 

μ

2 

|| X − D 

(i ) C (i ) || 2 F 

such that C (i ) 

j, �(i ) ( j) 
= 0 for j = 1 , 2 , . . . , k. (2) 

he constraint ensures that no anchor point uses itself for self

epresentation as in SSC. The optimization problem (2) can be

olved for example using alternating direction method of multi-

liers (ADMM) [50] ; see Algorithm 2 which we provide for com-

leteness (the superscripts are dropped for convenience). ADMM is

 good choice for our purpose: it has a low computational cost per

teration (linear in the number of variables), while its slow conver-

ence (linear at best) is not a bottleneck since a high precision is

ot necessary as we only need to know the order of magnitude of
ρ

where T γ (y ) = max ( 0 , | y | − γ ) sign (y ) is the 

soft-thresholding operator 

5: C i, �(i ) = 0 for i = 1 , 2 , . . . k 

6: � = � + ρ(A − C) 

7: end while 
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Algorithm 3: Scalable and robust sparse subspace clustering 

(SR-SSC) using randomized hierarchical clustering and multi- 

layer graphs. 

Input: Data matrix X ∈ R 

d×N ,the number L of sets of anchor 

points (that is, the number of graphs), the number k of 

anchor points per set, the parameter α, the number of 

clusters p. 

Output: A clustering of the columns of X in subspaces 

1: for i = 1 , 2 , . . . , L do 

2: Choose k anchor points which form the dictionary D 

(i ) 

using the randomized hierarchical procedure described 

in Section 3.1. 

3: Solve (2) to obtain C (i ) (we use Algorithm 2). 

4: Construct the symmetrized adjacency matrix W 

(i ) as in 

(3). 

5: Compute the normalized Laplacian matrix L 

(i ) as in (4). 

6: Compute the p eigenvectors U 

(i ) ∈ R 

N×p corresponding to 

the smallest eigenvalues of L 

(i ) . 

7: end for 

8: Compute the final Laplacian matrix L f as in (6). 

9: Compute the p eigenvectors U ∈ R 

N×p corresponding to the 

smallest eigenvalues of L f . 

10: The final clustering of the columns of X are obtained by 

clustering the rows of U using k -means with p clusters. 

3
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the entries of C ( i ) –also, the data is usually rather noisy hence it

does not make much sense to solve (2) to high precision. 

Once the coefficient matrices { C (i ) } L 
i =1 

are computed, a mul-

tilayer graph G with L layers G 

(i ) = (V, W 

(i ) ) is constructed: The

set V contains the vertices, one for each data point, and W 

( i ) 

is the weighted adjacency matrix of the i th layer. Denoting

E (i ) (�( j) , :) = C (i ) ( j, :) for j = 1 , 2 , . . . , k while the other rows of

E ( i ) are equal to zero, W 

( i ) is obtained by symmetrizing E ( i ) , that is,

 

(i ) = | E (i ) | + | E (i ) T | , (3)

similarly as for SSC. Note that W 

( i ) is a sparse matrix with less than

2 kN non-zero coefficients. Now, we need to combine the informa-

tion from the individual graphs in each layer. To do so, we adopt

the method presented in [26] to merge the information of differ-

ent layers into a proper representation such that it strengthens

the connectivity/information that majority of graphs tend to agree

on. Let us briefly describe this technique. The problem of merg-

ing a multilayer graph is combined with the problem of merging

different subspaces on a Grassmann manifold. For each individual

graph G 

( i ) , we compute its p -dimensional subspace representation

as the matrix U 

(i ) ∈ R 

N×p whose columns are the eigenvectors cor-

responding to the p smallest eigenvalues of the normalized Lapla-

cian matrix of the corresponding graph, that is, 

L 

(i ) = I − D 

(i ) 
g 

−1 / 2 
W 

(i ) D 

(i ) 
g 

−1 / 2 
(4)

where D 

(i ) 
g is the diagonal matrix where each diagonal element

is the degree of the corresponding vertex in G 

( i ) . The problem

of combining the multilayer graph is then formulated as fol-

lows [26] : 

min 

∈ R N×p 

L ∑ 

i =1 

trace 
(
U 

T L 

(i ) U 

)
− α

L ∑ 

i =1 

trace 
(
U U 

T U 

(i ) U 

(i ) T 
)

such that U 

T U = I. (5)

The above optimization problem finds a subspace representation

that satisfies two goals. The first term makes sure the connectiv-

ity information of each individual graph is preserved within the

subspace U (since this information is contained in their Laplacian

matrices L 

(i ) ). The second term is a distance metric that incites the

subspace U to be close to the subspaces U 

( i ) corresponding to each

graph (on the Grassmannian manifold U 

T U = I). The parameter α
balances the two terms. The solution U to problem (5) is the fi-

nal subspace representation and can be obtained by finding the p

eigenvectors corresponding to the smallest eigenvalues of 

L f = 

L ∑ 

i =1 

L 

(i ) − α
L ∑ 

i =1 

U 

(i ) U 

(i ) T . (6)

The final clusters are obtained by clustering rows of these eigen-

vectors using k -means, as for spectral clustering. As we will see

in Section 4.1.1 , the choice of the parameter α will not influence

the overall procedure as long as it is chosen in a reasonable range.

Note that choosing α = 0 amounts to the naive strategy of sum-

ming up the adjacency matrices of the different layers, which will

turn out to perform rather poorly. 

SR-SSC. Finally, our proposed algorithm to perform scalable and

robust sparse subspace clustering (SR-SSC) is summarized in

Algorithm 3 . 

Remark 1. The choice of p , that is, of the number of clusters, can

also be done automatically, as for SSC, for example by looking at
(i ) 
the drop in the eigenvalues of the L ’s and use a majority voting. d  
.3. Computational cost of SR-SSC 

Let us analyze the computational cost of Algorithm 3 , that is,

f SR-SSC. Let us first analyze the for loop which is performed L

imes. Identifying the anchor points requires at most O ( kNd ) op-

rations; see Section 3.1 . The main computational cost for solv-

ng (2) using Algorithm 2 is performed at step 3 with a cost

f O ( k 2 N ) operations to compute D 

T D, O ( k 3 ) operations to com-

ute the inverse, and O ( kdN ) operations to compute D 

T X . Assuming

e fix the number of iterations of Algorithm 2 and since k � N ,

he total computational cost for solving (2) using Algorithm 2 is

 (k 2 N + kNd) . 

Constructing L 

(i ) can be done directly from C ( i ) and requires

 ( kN ) operations. To compute the eigenvectors of L 

(i ) , we use

RPACK which is a sparse eigenvalue solver (since L 

(i ) has a most

 kN non-zero entries) which requires O ( pkN ) operations [51] . 

It remains to form L f defined in (6) , and compute the eigen-

ectors U corresponding to the p smallest eigenvalues. Note there

s no need to form matrix L f explicitly. The first term 

∑ L 
i =1 L 

(i ) of

he global Laplacian matrix L f contains at most O ( LkN ) non-zero

lements (since each L 

(i ) has at most O ( kN ) non-zero elements),

nd the second term has rank at most O ( Lp ) since each U 

( i ) has

 columns. Computing the eigenvalue decomposition of a sparse

with O ( LkN ) non-zero entries) plus low-rank matrix (of rank Lp ) of

imension N × N using ARPACK requires O (LNp(k + p)) operations.

n fact, ARPACK is based on implicitly restarted Arnoldi method

hich reduces to implicitly restarted Lanczos method when the

atrix is symmetric (as in our case). Arnoldi/Lanczos are adapta-

ions of the power method for finding a few eigenvalues and the

orresponding eigenvectors of a large-scale structured or sparse

atrix based on simple iterations using matrix-vector multiplica-

ions. Hence it is capable of obtaining the eigenvectors of a matrix

or which the explicit stored form is not available as long as the

atrix-vector multiplication can be done efficiently. 

The total computational cost of SR-SSC is O (LN(k 2 + kd +
p(k + p)) operations, which is linear in N hence scalable for large

ata sets as long as L and k remain small. As we will see, a value
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f L below 10 is usually enough while k should not be significantly

arger than the lower bound 

∑ n 
i =1 (d i + 1) (since we need to select

t least d i + 1 points in the i th subspace for SSC to work properly).

ince the d i ’s are usually unknown, a good choice is to pick k as a

ultiple of pd ′ where d ′ ≤ d is a guess for the average dimension

f the subspaces, e.g., k = 10 pd ′ . 
Note that the original SSC algorithm corresponds to tacking L =

 and k = N, with a computational cost of O (N 

3 + N 

2 d) operations

for our particular implementation using ADMM). 

emark 2. If the input matrix X is sparse, the computational cost

s reduced further as the term Nd is replaced with the number of

on-zero entries of X . 

emark 3. Our algorithm could be made faster by replacing SSC

ith LRR or LSR, or use OMP instead of LASSO. However, this will

n most cases lead to a decrease in accuracy since the original SSC

lgorithm performs better than these approaches in general (cf. the

iscussion in Sections 1 and 2 ) while the main goal of this paper

s to make SSC scalable. 

emark 4. In the recent paper [52] , authors proposed a way to

elect anchor points sequentially that allows to provably identify

 � data points in each subspace, assuming these subspaces are in-

ependent. The idea is to extract anchors as long as the approxi-

ation error of the data points by these anchors is above a given

hreshold. As far as we know and as stated in [52] , this is the only

ork that provides such a theoretical result for the selection of

nchor points. It appears we can use exactly the same trick for

he selection of our anchor points: Under the independent sub-

pace assumption, as long a less than d � anchors have been ex-

racted from the � th subspace, the reconstruction error of at least

ne data point in that subspace will be lower bounded (this de-

ends on the angles between subspaces, and how the data points

re spread within the � th subspace). Of course, in practice, we do

ot know the values of this lower bound, but we can stop extract-

ng anchors when the reconstruction error for each data point is

elow some chosen threshold; as done in [52] . For this work, we

ave not used such a strategy; this is a topic for further investiga-

ion. 

hoice of the parameters μ and λ. The regularization parameter μ
n (2) , which depends directly on λ in Algorithm 3 , balances the

mportance between the data fitting term and the sparsity of the

oefficient matrix. A smaller μ leads to fewer wrong connections

enforcing sparsity) whereas a larger value for μ increases the

umber of true connections (denser connectivity), which imposes a

atural trade-off. In other words, we want to set μ as small as pos-

ible while making sure it leads to sufficient connectivity. It was

uggested in [18] (and previously in sparse representation litera-

ure) to set μ as μ = λμ0 with λ> 1 and μ0 = 

1 

max j � = j | x T j x i | 
where

0 is the smallest value for which the coefficient vector for some

ample would be zero. The value for μ (and hence λ) that leads

o the best results for SSC is data dependent. For data from sub-

paces with small intrinsic dimension, the regularization parame-

er should be small to enforce sparsity (as each data point should

deally use d samples to represent itself) and for subspaces with

igh intrinsic dimension, it should be chosen larger to relax spar-

ity. Hence, [53] suggested the regularization parameter should be

n the order of 
√ 

d . In this paper, we will fix the value of λ to some

rescribed value that leads to reasonable results, without giving

articular attention for fine tuning this parameter. 

. Numerical experiments 

In this section, we evaluate the performance of SR-SSC on both

ynthetic and real-world data sets. All experiments are imple-
ented in Matlab, and run on a computer with Intel(R) Core(TM)

7-3770 CPU, 3.40 GHz, 16GB. The code is available from https://

ites.google.com/site/nicolasgillis/code . 

.1. Synthetic data sets 

In this section, we investigate the performance of SR-SSC un-

er different conditions and depending on the choice of the pa-

ameters: the number of graphs L , the number of anchor points

 , and the value of α. To do so, we use synthetic data sets that

onsist of three 10-dimensional spaces ( d 1 = d 2 = d 3 = 10 ) within

 20-dimensional space ( d = 20 ) with the following bases: 

 1 = 

(
cos (θ ) I 10 

sin (θ ) I 10 

)
, U 2 = 

(
cos (θ ) I 10 

− sin (θ ) I 10 

)
, U 3 = 

(
I 10 

I 10 

)
, 

here I q is the identity matrix of dimension q and θ ∈ [0, 2 π ]. For

ach subspace, we pick N /3 random samples (we will choose N as

 multiple of 3) generated as linear combinations of U i where the

eights in the linear combinations are chosen at random using the

aussian distribution of mean 0 and variance 1 (in Matlab, U 1 ∗
andn(10, N/3) ). Finally, an i.i.d. random Gaussian noise with

ero mean and standard deviation σ is added to the data matrix

in Matlab, σ randn(d,N) ). Similar to [22] , the data points are

ormalized such that their � 2 norm is equal to one. 

The affinity between subspaces can be defined as an average of

he cosine of the angles between subspaces; see [22] . It was shown

n [22] that the larger the affinity, the more difficult it is for SSC

o identify the right subspaces. For our particular synthetic data

ets, decreasing the value of θ from 

π
2 to 0 increases the affinity

nd hence makes the subspace clustering task more challenging.

or evaluating the performance of SR-SSC on this synthetic data

et, the value for regularization parameter μ in (2) is chosen as

= λμ0 where μ0 is the minimum value which avoids a zero co-

fficient matrix C , and λ is set as 40. 

udget. To have a fair comparison between SR-SSC with different

umber of graphs and anchor points, we define the budget of SR-

SC as 

udget = L × k. 

ence for a fixed budget, a larger value of L will imply a smaller

alue of the number of anchor points k . Note that this choice of the

udget favors SR-SSC with fewer graphs since the computational

ost of SR-SSC is not linear in k (it is in L ); see Section 3.3 . We

ade this choice for simplicity and to be conservative in the sense

hat using more graphs will not increase the computational cost

or a fixed budget. 

ccuracy. To assess the quality of a clustering, we will use the ac-

uracy, defined as 

ccuracy = 

# of correctly classified points 

total # of points 
. 

.1.1. Effect of the parameter α
The multilayered graph technique from [26] has a parameter α

hat balances the connectivity of each graph and the distances be-

ween their subspace representations; see Section 3.2 . The authors

n [26] recommended to use α = 0 . 5 (and observed that their ap-

roach is not too sensitive to this parameter). 

To see the effect of α on SR-SSC, we use the synthetic data

et described above with N = 30 0 0 , σ = 0 . 2 and θ = 20 ◦. Fig. 1

isplays the average accuracy of SR-SSC with L = 5 and k =
0 0 , 20 0 , 30 0 for different values of α over 10 trials. We observe

hat the performance is quite stable for values of α around 0.5.

We have made the same observation in our experiments with real

https://sites.google.com/site/nicolasgillis/code
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Fig. 1. The average accuracy of SR-SSC for different values for the parameter α, 

with 10 0, 20 0, 30 0 anchor points. Note that the accuracy decreases for 300 anchor 

points, this behavior is explained in Section 4.1.2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Average accuracy of SR-SSC for different number of graphs and for different 

budgets. 
data sets although we do not report the results here to limit the

size of the paper.) It is rather interesting to note that, for α = 0 ,

there is a clear drop in the performance of SR-SSC. In other words,

merging naively the information about the Laplacians L 

(i ) ’s of each

layer by summing them together does not work well. Finally, we

will use the value of α = 0 . 5 for two main reasons: (1) it was

the value recommended in [26] , and (2) using higher values, e.g.,

α = 1 leads to similar results for real data sets as well (for exam-

ple, for the MNIST data set, it allows an increase of accuracy of

0.5% for the whole data set, but when analyzing a subset clusters,

it reduces accuracy by about 0.5%). The slight decrease in the gen-

eral performance for k = 300 is addressed in the next section. 

4.1.2. Role of the number of graphs L and anchor points k 

In this section, we investigate the performance of SR-SSC de-

pending on the number L of graphs (that is, the number of sets

of anchor points) and the number k of anchor points per graph

for different affinities between subspaces and noise levels. We will

show that selecting multiple sets of anchor points can significantly

improve the performance of SR-SSC when the subspace clustering

problem gets more challenging (that is, larger affinity and higher

noise level). 

Let us use the synthetic data sets described in the previous sec-

tion with N = 30 0 0 and σ = 0 . 2 . Fig. 2 shows the average accuracy

of SR-SSC over 10 generated synthetic data sets for different values

of the budget, for different numbers of graphs and for 3 values of

θ (45, 30, 20 degrees). 

We observe that if the affinity between subspaces is large

enough (namely, for θ = 20 ◦), the performance of SSR-SSC with

one graph decreases as the budget increases; a similar observa-

tion was already reported in [18] . This is due to the fact that as

the affinity increases, the chances of choosing wrong connections

increases as well. However, the multilayered graph structure re-

duces this effect as it seeks for connections that are agreed on by

a majority of individual graphs [26] . In fact, we see that for a bud-

get sufficiently large, using more graphs improves the performance

of SR-SSC significantly. For example, for a budget of 10 0 0, SR-SSC

with 1 graph (this means that 1/3 of the data points are used as

anchors) has average accuracy below 70% while with 9 graphs, it

has average accuracy above 99%. 

Fig. 3 displays the box plots for the accuracy of SR-SSC over

10 trails for θ = 20 ◦. We observe that increasing the number of
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Fig. 3. The boxplot of the accuracy over 10 trials for different number of graphs. 

Fig. 4. Effect of increasing the noise on the performance of SR-SSC ( θ = 30 ◦, σ = 

0 . 4 ). This figure can be compared with Fig. 2 (b) which corresponds to θ = 30 ◦, σ = 

0 . 2 . 
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Fig. 5. Influence of merging individual graphs on accuracy. The individual perfor- 

mance of 5 layers of graph is compared with the performance of the final merged 

representation (yellow). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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ayers and the number of anchor points not only increases the av-

rage accuracy but also reduces the variance significantly. Clearly

y increasing the number of layers, the chance of choosing good

nchor points and hence constructing consistent graphs increases.

his indicates a natural trade-off between computational cost and

ncrease in performance of SR-SSC. 

Noise is the other main factor that makes subspace clustering

ore challenging. To study the effect of the noise, we use the pre-

ious experiment setting with θ = 30 ◦ but increase the standard

eviation σ of the additive Gaussian noise from 0.2 to 0.4. The re-

ult is plotted in Fig. 4 . Comparing Fig. 2 (b) and Fig. 4 , it is clear

hat adding more layers leads to a more stable performance in the

resence of a higher noise level. In particular, the average accuracy

f SR-SSC with 1 graph drops from over 99% to below 75%, while

ith 5 to 9 graphs, it drops only from 100% to above 95%. 

It is interesting to compare the performance of individual

raphs with the merged one. Let us use the synthetic data sets

ith θ = 20 ◦ and use L = 5 for SR-SSC. The average accuracy with

espect to the budget is plotted in Fig. 5 . We observe that even

hough the accuracy of individual graphs vary between 70% to 95%,
he performance of the merged graph is stable and around 98% (for

 budget larger than 300). This is due to the fact that the multi-

ayer graph framework is able to highlight the information shared

y the majority of graphs. 

.1.3. The role of randomized hierarchical clustering for selecting the 

nchor points 

It is interesting to compare the performance of the randomized

ierarchical clustering with other subset selection methods. Fig. 6

llustrate the performance on the synthetic data set with θ = 20 ◦

f the following standard methods: QR [43] , leverage score sam-

ling [46] , hybrid sampling [44] and uniform random sampling. It

hows the average accuracy over 5 trials for 1, 3 and 5 layers of

raphs. The QR method is deterministic and hence is shown only

or 1 layer. It can be seen that increasing the number of layers

an generally improve the performance of all randomized meth-

ds. The hybrid method performs similarly as the randomized hi-

rarchical clustering, but with much higher computational cost due

o SVD decomposition (cf. the discussion in Section 3.1 ). Note that

he naive approach of using uniform sampling does not perform

oo poorly, the reason being that the samples from the synthetic

ata set are evenly and well-spread among the different subspaces.

.1.4. Effect of number of subspaces 

In order to investigate the effect of the number of subspaces

n the performance of SR-SSC, several 5-dimensional subspaces

ith ambient dimension of 50 are randomly generated (in Mat-

ab, randn(50,5) ∗ randn(5,p) where p = 100 is the num-

er of samples in each subspace. The number of subspaces vary

rom 2 to 20. Fig. 7 shows the ratio of accuracy between SR-SSC

ith one layer and SSC, for different number of selected anchor

oints. Clearly selecting too few samples from each subspace af-

ects the performance or SR-SSC (from the theory point of SSC, at

east 6 points from each subspace are needed for the representa-

ion). When the number of subspaces increases, SR-SSC requires

lightly more samples to match SSC accuracy. In any case, this ex-

mple illustrates that SR-SSC is able to select good sets of anchor

oints since its performance compared to SSC is the same as long

 sufficiently many anchor points are selected (10 anchor points in

verage per subspace is enough –even when there are many highly

ependent subspaces; e.g., for the case of 20 subspaces of dimen-

ion 5 in ambient dimension 50). 
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Fig. 6. Comparison of performance of SR-SSC with other anchor selection methods. From left to right: one layer, three layers and five layers. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Effect of the number of subspaces on the ratio of performance of SR-SSC (1 

layer) and SSC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Percentage of outliers corresponding to the break-down point of SR-SSC (that is, 

the accuracy goes below 95% beyond that point) for different affinities and various 

number of graph layers. 

θ 1 Graph 3 Graphs 5 Graphs 7 Graphs 9 Graphs 

30 ◦ 42.5 47.5 57.5 70 77.5 

20 ◦ 0 2.5 17.5 20 22.5 

Fig. 8. The effect of outliers on performance of SR-SSC for θ = 30 ◦, and a fixed 

budget of 10 0 0. The figure reports the average accuracy over 20 runs of SR-SSC for 

different percentages of added outliers. 
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4.1.5. Effect of adding outliers 

Eventhough there exists several methods in the litera-

ture [22,54] to deal with outliers, these methods are often based

on assumptions that might not be true in all data sets (such

as dense representation of outliers or strong connectivity of the

graph). Hence, it might not be always possible to correctly sepa-

rate inliers from outliers and this can deteriorate significantly the

performance of the clustering algorithm. To analyze the behavior

of SR-SSC in the presence of outliers, the same synthetic data set

with N = 30 0 0 under 3 different affinities ( θ = 45 ◦, θ = 30 ◦ and

θ = 20 ◦) is used. We add different numbers of outliers (expressed

as a percentage of the 30 0 0 data points) to the data set. Each

outlier is generated as follows: each entry is generated using the

Gaussian distribution of mean 0 and standard deviation 1, and then

the outlier is normalized to have unit � 2 norm as done in [22] :

‘This guarantees that outlier detection is not trivially accomplished

by exploiting differences in the norms between inliers and out-

liers’. We set the value of the budget to 10 0 0 and evaluate the

average performance of SR-SSC in correctly clustering the inliers

for different layers of graphs over 20 trials (we apply SR-SSC with

3 clusters on the data set with the outliers, and then compute the

accuracy taking into account only the inliers). 

Surprisingly, for θ = 45 ◦, the accuracy remains 100% for any

number of graphs when adding as many outliers as data points.

For the two other cases ( θ = 20 ◦, 30 ◦), the percentage of outliers
hich breaks down the accuracy of SR-SSC (with no outliers) is

eported in Table 1 and the average performance of SR-SSC for

= 30 ◦ over 20 trials is illustrated in Fig. 8 . Not surprisingly, we

bserve that as the affinity increases, the percentage of allowed

utliers to maintain the accuracy decreases. Moreover, we observe

hat adding more layers to the graph (for a fixed budget) leads

o a more robust and stable performance as the percentage of al-

owed outliers to maintain the accuracy increases significantly. (Re-

all that that for θ = 20 ◦, the one-layered graph performs poorly

ven without outliers; see Section 4.1.2 .) 

.1.6. Overshadowing the oversegmentation issue 

An important issue in SSC is the connectivity of the graphs

orresponding to the data points within each subspace. In par-

icular, there is no guarantee that for dimensions higher than

our, the points from the same subspace form a single connected
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Fig. 9. Illustration of the oversegmentation of SSC for two subspaces. The green dots correspond to the samples while the blue edges between the samples correspond to 

non-zero weights in the coefficient matrix. (a) The graph corresponding to the coefficient matrix of standard SSC with four connected components. (b) The graph corre- 

sponding to the coefficient matrix of SR-SSC with two connected components. The red dots correspond to the anchor points. 
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omponent [35] . In this section, we show that by choosing anchor

oints as representative samples, the oversegmentation issue of

SC is alleviated. For this purpose, the points from two subspaces

n a 8-dimensional space are created similarly as in [35] . More pre-

isely, we consider 160 points from each subspace chosen around

wo orthogonal circles. Half of the points on the first subspace are

iven by 

 1 (k, s, s ′ ) = [ cos θk , sin θk , sδ, s 
′ δ, 0 , 0 , 0 , 0] T , (7)

nd of the other half by 

 2 (k, s, s ′ ) = [ sδ, s ′ δ, cos θk , sin θk , 0 , 0 , 0 , 0] T , (8)

here θ = 

πk 
10 ( k = 0 , 1 , . . . , 19 ), s, s ′ ∈ {−1 , 1 } and δ = 0 . 1 . Simi-

arly, the second subspace contains the points 

 1 (k, s, s ′ ) = [0 , 0 , 0 , 0 , cos θk , sin θk , sδ, s 
′ δ] T , 

nd 

 2 (k, s, s ′ ) = [0 , 0 , 0 , 0 , sδ, s ′ δ, cos θk , sin θk ] 
T . 

or a point x 1 ( k, s, s ′ ) defined in (7) , the non-zero weights in SSC

ill correspond to the four points x 1 ( k ± 1, s, s ′ ), x 1 (k ± 1 , −s, s ′ )
nd x 1 (k ± 1 , s, −s ′ ) . This implies that there will be no connections

etween the points x 1 ( k, s, s ′ ) and x 2 ( k, s, s ′ ) within the same sub-

pace, and similarly for y 1 ( k, s, s ′ ) and y 2 ( k, s, s ′ ). The graph cor-

esponding to the SSC coefficient matrix C is shown in Fig. 9 (a).

learly, the coefficient matrix of SSC corresponds to a graph with

 connected components. For this reason, SSC has accuracy of 75%.

However, selecting a few anchor points strengthens the connec-

ivity within each subspace. The intuition is that if the points use

nly few anchor points that are well spread within the data set,

hen the chance of them forming a single connected component

n the similarity graph increases. This is what we observe when

hoosing 50 samples (out of 320 data points) on the above data

et (using our proposed randomized hierarchical clustering). The

raph corresponding to coefficient matrix is shown in Fig. 9 (b), and

R-SSC accuracy is 100%. Note that the same observation holds for

his example as long as the number of anchor points is less than

round 200. 

.1.7. How selecting few anchor points can help subspace clustering 

In order to get a better intuition about how SR-SSC can im-

rove the performance of clustering, we reuse the synthetic data

et from Section 4.1 and generate 30 0 0 samples from the 3 afore-

entioned subspaces with two different values of θ , namely, 30
nd 20. We set the budget to 10 0 0 and σ = 0 . 2 for both cases

nd consider 1, 3 and 5 graphs. We calculate the top 3 eigen-

ectors of the matrix L f corresponding to each case and plot the

econd and third eigenvectors in Figs. 10 and 11 for θ = 30 ◦ and

= 20 ◦, respectively. The eigenvectors corresponding to each sub-

pace are plotted in the same color. This presentation provides a

-dimensional representation for the coefficient matrices [11] . We

bserve that by selecting few anchor points, especially in the more

hallenging case ( θ = 20 ◦), we are strengthening the within sub-

pace connectivity (the samples within each subspace are gath-

red together more closely) and at the same time, they are more

eparated from the other subspaces. This illustrates the fact that

y selecting few well-spread anchor points, the samples from the

ame subspace tend to form a strong single connected component

hence, avoiding the oversegmentation issue). Moreover, this also

revents undesirable (strong) connections between samples from

ifferent subspaces that is typical in the presence of noise and

lose subspaces. 

.2. Real-world data sets 

In this section, the performance of SR-SSC is evaluated us-

ng three large-scale and challenging data sets: handwritten digits

MNIST), object images (CIFAR10) and forest data set (Covertype).

e compare the accuracy and running times of SR-SSC with stan-

ard SSC based on ADMM (this is SR-SSC with L = 1 and k = N)

nd four state-of-the art methods for sparse subspace clustering,

amely OMP [28] , SSSC [27] (which is closely related to SR-SSC

ith L = 1 ), KSSC [34] and ORGEN [33] ; see Section 2 for a brief

escription of these methods. For OMP and ORGEN, we used the

ode available from http://vision.jhu.edu/code/ . 

.2.1. MNIST data set of handwritten digits 

The MNIST database contains 70,0 0 0 gray scale images of 10

andwritten digits, each of size 28-by-28 pixels. For each image,

sing a scattering convolution network [55] , a feature vector of di-

ension 3472 is extracted and then projected to dimension 500

y PCA as done in [28,33] . Nine data sets corresponding to dif-

erent number of digits are formed (namely digits from 0 to i

or i = 1 , 2 , . . . , 9 ), with around 50 0 0 to 70 0 0 data points of each

igit. We also consider data sets with similar digits (2 and 3, 3

nd 5, and 1 and 7 are similar), namely {1,2,3}, {1,3,5}, {2,3,5} and

1,2,3,5,7}. For SR-SSC, we use L = 5 , and we select 100 n anchor

http://vision.jhu.edu/code/
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Fig. 10. Two dimensional embedded representation of SR-SSC for θ = 30 ◦ for synthetic data with three clusters. From left to right: one layer, three layers and five layers. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Two dimensional embedded representation of SR-SSC for θ = 20 ◦ for synthetic data with three clusters. From left to right: one layer, three layers and five layers. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

points where n is the number of clusters. For a fair comparison, a

dictionary with size corresponding to the whole budget for each

case is randomly selected for SSSC. The regularization parameter μ
in (2) is chosen as μ = λμ0 where μ0 is the minimum value which

avoids a zero coefficient matrix C , and λ is chosen 120 for our ap-

proach, ORGEN and SSSC. The sparsity parameter of OMP and reg-

ularization parameter of ORGEN are set to 10 and 0.95 according

to the corresponding papers [28,33] . The number of nearest neigh-

bors for KSSC is chosen to be 30. 

The average clustering accuracy and running time for each ap-

proach for over 10 trials is reported in Tables 2 and 3 . We observe

that 

• SSC runs out of memory for data sets with more than 10,0 0 0

points. Since the data set [0:1] has low affinity, it performs well

in this situation. 
Table 2 

Accuracy (in %) of the different clustering methods over diffe

indicates that SSC ran out of 16GB memory. The best accuracy 

Digits SSC-ADMM OMP ORGEN 

[0: 1] 99.26 99.11 99.29 

[0: 2] M 98.67 98.29 

[0: 3] M 62.91 62.67 

[0: 4] M 69.63 69.67 

[0: 5] M 48.87 75.42 

[0: 6] M 76.18 78.53 

[0: 7] M 69.39 80.47 

[0: 8] M 59.79 81.62 

[0: 9] M 48.44 93.85 

[1 2 3] M 51.29 51.10 

[1 3 5] M 52.56 52.74 

[2 3 5] M 95.83 96.85 

[1 2 3 5 7] M 64.65 70.32 
• SR-SSC has the most stable clustering accuracy with a mini-

mum of 89.89% while being computationally efficient. This val-

idates the fact that the use of a multilayer graph in SR-SSC

makes it more robust (given that the number of graphs L and

the number of anchor points k is large enough). 
• OMP performs poorly as soon as the affinity starts to increase. 
• There is a drop of performance of ORGEN, KSSC and OMP by

adding the digit 3 to the data set. This is due to the similar-

ity between the digits 2 and 3: these methods oversegment the

cluster containing the digit 1 while failing to distinguish be-

tween digits 2 and 3 (for example, ORGEN puts 51.8% of dig-

its 1 in one cluster, 45.6% of digits 1 in another while digits 2

and 3 are put together in a single cluster with 2.6% of digits 1).

This is confirmed by the low performance of OMP, ORGEN, KSSC

and SSSC in clustering the digits {1,2,3} and {1,3,5} in Table 2 .

However, the performance of the aforementioned methods is
rent sets of digits of the MNIST data set. The value M 

is indicated in bold, the second best is underlined. 

SSSC (500 n ) KSSC SR-SSC (5,100 n ) 

99.21 99.97 99.36 

50.81 99.22 98.32 

62.59 63.19 98.06 

64.34 70.16 98.23 

65.80 75.19 93.41 

68.41 79.00 93.98 

76.49 81.43 94.26 

75.77 70.23 90.53 

68.07 84.01 89.89 

51.37 52.34 98.39 

55.44 54.31 89.20 

93.53 97.88 87.96 

61.21 71.76 92.58 
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Table 3 

Running times in minutes of the different clustering methods over different sets of digits on the MNIST data set. The 

value M indicates that SSC ran out of 16GB memory. 

Digits SSC-ADMM OMP ORGEN SSSC (500 n ) KSSC SR-SSC (5,100 n ) 

[0: 1] 239.07 0.69 2.12 0.47 1.35 0.64 

[0: 2] M 1.45 3.65 1.08 1.44 1.37 

[0: 3] M 2.36 5.27 2.01 1.80 2.48 

[0: 4] M 3.51 6.96 3.16 2.25 3.53 

[0: 5] M 5.00 8.81 4.66 2.68 5.36 

[0: 6] M 6.37 10.92 6.68 3.10 7.56 

[0: 7] M 8.25 13.45 9.03 3.59 11.30 

[0: 8] M 10.85 15.97 11.61 4.27 13.73 

[0: 9] M 13.02 18.28 14.95 4.79 17.71 

Table 4 

Accuracy (in %) of SR-SSC for different set of parameters over different sets of digits 

of the MNIST data set. 

Digits SR-SSC SR-SSC SR-SSC SR-SSC SR-SSC 

(3,30 n ) (5,30 n ) (5,50 n ) (5,100 n ) (3,200 n ) 

[0: 1] 97.96 97.93 98.81 99.36 99.46 

[0: 2] 96.86 97.07 97.66 98.32 98.49 

[0: 3] 96.47 96.81 97.73 98.06 98.54 

[0: 4] 96.72 96.61 97.74 98.23 98.51 

[0: 5] 91.68 91.54 92.46 93.41 94.02 

[0: 6] 92.12 92.90 93.37 93.98 94.02 

[0: 7] 92.96 92.39 93.36 94.26 94.87 

[0: 8] 83.36 84.01 86.23 90.53 93.95 

[0: 9] 83.95 82.92 87.84 89.89 91.09 
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high in clustering digits {2,3,5} which means that unlike digit

1, the digit 5 cluster forms a well connected component so that

digits 2 and 3 are also well separated. This confirms our previ-

ous results on synthetic data sets in Section 4.1 that showed

that our proposed method performs well in the challenging

case of close subspaces, and overshadows the oversegmentation

effect. 
• The running time of SR-SSC is similar to the other scalable

SSC variants except KSSC. KSSC uses LADMPSAP (linearized al-

ternating direction method with parallel splitting and adaptive

penalty) [56] which benefits from parallel computing. More-

over, KSSC uses mex implementations of vlfeat library [57] to

select nearest neighbors efficiently. Hence, the reported com-

putational time of KSSC is much lower than other methods and

it is not fair to compare them. 

The performance of SR-SSC for different parameters (namely the

umber of graphs and anchor points) is shown in Table 4 for five
Fig. 12. The effect of regularization parameter λ on the performance o
ets of parameters: (3,30 n ), (5,30 n ), (5,50 n ), (5,100 n ) and (3,200 n ).

e observe that adding more anchor points increases the accu-

acy in almost all cases. However, the performance is quite sta-

le among different settings before adding digit 8 and SR-SSC is

till able to perform well even with only 30 anchor points per

luster. The very similar performances for the (3,30 n ) and (5,30 n )

ases highlight the fact that multilayer framework can improve

he performance as long as enough anchor points are chosen

or each individual layer. Hence the performance of SR-SSC de-

ends on two main factors: (i) to have well-spread and sufficiently

any anchor points and (ii) sufficiently many number of layers to

est summarize informative shared connectivity among different

ayers. 

Let us analyze the sensitivity of SR-SSC, ORGEN and SSSC to the

egularization parameter of λ for two cases, namely for the digits

0: 9] (the whole data set) and [0: 3] (where an oversegmentation

ssue was observed for the other approaches; see Table 2 ). The ac-

uracy of the different algorithms is measured for different value of

and is plotted in Fig. 12 . For SR-SSC and SSSC, the accuracy is av-

raged over three random trials. We observe that the performance

f SR-SSC is quite stable (as long as the regularization parameter is

ot too high or too low) even when the chance of oversegmenta-

ion is high for the case of [0: 3] digits. SSSC and ORGEN are more

ensitive to the choice of λ; in particular, the highest accuracy of

RGEN for the whole data set is achieved for only a very limited

ange of this parameter. 

.2.2. CIFAR10 data set of images 

The performance of the same algorithms is compared on the

hallenging CIFAR10 data set. CIFAR10 consists of 32-by-32 colored

mages of 10 objects. For each image, we converted it to grayscale

nd then scattering convolution network is used again to extract
f SR-SSC, ORGEN and SSSC for the digits (a) [0: 9] and (b) [0: 3]. 
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Table 5 

Accuracy of different clustering methods over different sets of clusters on the CIFAR10 data set. The value M indicates 

that SSC ran out of 16GB memory. The best accuracy is indicated in bold, the second best is underlined. 

# clusters SSC-ADMM OMP ORGEN SSSC KSSC SR-SSC SR-SSC SR-SSC 

(700 n ) (3,100 n ) (5,100 n ) (7,100 n ) 

2 50.68 50.02 50.82 50.01 74.87 80.33 82.44 83.15 

3 33.72 33.85 33.89 33.45 50.27 52.01 51.79 52.86 

4 M 25.62 25.36 25.06 39.75 51.40 52.29 51.76 

5 M 20.56 20.51 20.07 31.79 39.68 41.71 40.97 

6 M 17.09 17.16 16.70 28.53 36.58 36.56 37.93 

7 M 14.59 14.73 14.33 23.59 29.83 31.35 30.79 

8 M 12.79 12.89 12.55 22.27 27.23 30.58 31.11 

9 M 11.36 11.51 11.16 21.96 26.96 27.74 28.07 

10 M 10.23 10.37 10.07 19.22 24.36 23.88 26.44 

[1 2 4] 33.75 33.36 33.90 33.42 39.00 60.69 61.85 63.51 

[1 3 4] 45.87 33.39 33.57 33.41 39.28 58.46 58.25 59.43 

[1 2 6] 33.76 33.93 33.90 33.41 41.67 61.63 61.20 62.90 

[1 3 6] 57.49 33.35 33.61 33.43 40.37 56.08 58.39 58.43 

Table 6 

Computational time in minutes of different clustering methods over different sets of clusters on the CIFAR10 data set. 

The value M indicates that SSC ran out of 16GB memory. 

# clusters SSC-ADMM OMP ORGEN SSSC KSSC SR-SSC SR-SSC SR-SSC 

(700 n ) (3,100 n ) (5,100 n ) (7,100 n ) 

2 57.69 0.81 6.19 0.16 0.60 0.18 0.29 0.40 

3 162.70 1.60 10.01 0.40 0.88 0.38 0.63 0.89 

4 M 2.59 15.37 0.80 1.22 0.65 1.08 1.58 

5 M 3.84 20.52 1.35 1.54 1.03 1.70 2.38 

6 M 5.23 25.36 2.06 1.91 1.50 2.59 3.49 

7 M 7.08 29.53 2.71 2.17 2.22 3.63 4.84 

8 M 8.83 35.21 3.85 2.67 3.08 4.78 6.54 

9 M 11.15 40.27 5.05 3.02 3.88 6.07 8.52 

10 M 13.40 47.60 6.12 3.57 4.99 7.94 10.74 

Table 7 

Accuracy of different clustering methods on Covertype Dataset. 

SSC-ADMM OMP ORGEN SSSC KSSC SR-SSC SR-SSC SR-SSC SR-SSC 

(40 0 0) (5,700) (3,1400) (7,700) (5,1400) 

M 48.76 53.52 36.50 33.40 48.35 48.75 48.87 48.58 
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3 http://archive.ics.uci.edu/ml/datasets/Covertype . 
feature vectors which are projected to dimension 500 using PCA.

Ten different sets of data corresponding to different numbers of

clusters are formed. For each cluster, 50 0 0 samples of the corre-

sponding class are selected randomly. We consider 3, 5 and 7 lay-

ers of graphs for our method and 100 n anchor points are selected

for each graph. 

The sparsity parameter of OMP algorithm is set to 10 and for

the regularization parameter μ is chosen as for the MNIST data

set, with λ = 120 for all different sets of experiments for ORGEN,

SSSC and SR-SSC. The results are reported in Tables 5 and 6 . 

SR-SSC has the highest accuracy in all cases, while it takes less

than a minute to cluster 10,0 0 0 of data points and less than 15

minutes to cluster 50,0 0 0 points. The performance of SR-SSC is

slightly higher for 7 graphs compared to 3 and 5 graphs, but the

difference is not significant. 

CIFAR is a challenging data set as the linearity assumption of

subspaces is violated, which explains the relative low accuracy of

SSC and its variants. However, SR-SSC still manages to outperform

all the SSC variants. Furthermore, we compared the performances

over four extra combinations of clusters at the bottom of Table 5 .

There is a clear drop in performance of SSC in clustering [1 2 4]

compared to [1 3 4], and [1 2 6] compared to [1 3 6]. This can be

explained by the close affinity between clusters 1 and 2 compared

to 1 and 3. 

In terms of computational time, SR-SSC compares favorably

with OMP and SSSC, as for MNIST. The computational time of OR-

GEN is significantly higher compared to other scalable approaches
or this data set. This is due to the adaptive support set selec-

ion method of ORGEN which depends on the correlation between

he data points and the oracle point . High correlation among data

oints in CIFAR decreases the amount of discarded data points for

ach iteration which plays a crucial role for the computational cost

f the algorithm. 

.2.3. Covertype data set 

The Covertype data set 3 contains 581,012 samples from 7 cat-

gories of tree types. Each sample has 54 categorical/integer at-

ributes that were derived from the data originally obtained from

he US Geological Survey (USGS) and USFS data. The sparsity pa-

ameter of OMP algorithm is set to 15 and λ is set to 50 for the

egularization parameter μ for both ORGEN and SR-SSC. The re-

ults are reported in Tables 7 and 8 . 

ORGEN achieves the best accuracy, but for a much higher com-

utational cost (see the discussion in the previous section). SR-SSC

ffers the best trade-off between computational time and accuracy.

or this data set, the accuracy is not too sensitive to the num-

er of graphs and anchor points. Note that SSSC is much faster

han SR-SSC in this case because (i) the data set if largen and

ii) SSSC uses SSC on only 40 0 0 samples to learn the subspaces

nd then cluster the other data points (these are two independent

teps). 

http://archive.ics.uci.edu/ml/datasets/Covertype
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Table 8 

Computational time of different clustering methods on Covertype Dataset (in minutes). 

SSC-ADMM OMP ORGEN SSSC KSSC SR-SSC SR-SSC SR-SSC SR-SSC 

(40 0 0) (5,700) (3,1400) (7,700) (5,1400) 

M 783 1452 14.52 15.89 222.14 400.12 323.00 664.19 
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. Conclusion 

In this paper, we have proposed a new framework to overcome

he scalability issue of SSC. Our proposed framework, referred to

s scalable and robust SSC (SR-SSC), constructs a multilayer graph

y solving LASSO problems using different sets of dictionaries. A

ast hierarchical clustering method was used to select the anchor

oints within the dictionaries that are good representatives of the

ata set. Screening out large numbers of data points drastically re-

uces the computational cost and memory requirements of SSC.

oreover, the multilayer structure has the ability to obtain a sum-

arized subspace representation from different layers of graphs

uch that it emphasizes shared information among different layers.

Our experimental results on synthetic and large-scale real-

orld data sets showed the efficiency of SR-SSC especially in chal-

enging cases of noisy data and close subspaces. Moreover, by

hoosing few common representative points, the proposed frame-

ork has the ability to overshadow the oversegmentation problem

f SSC. Of course, there is a trade-off between the computational

ost (which is directly related to the number of graphs used and

he number of anchor points selected for each graph) and the ro-

ustness of SR-SSC, which should be carefully balanced. We have

bserved in practice that using 5 to 10 graphs is a good choice,

hile the number of anchor point should be proportional to the

umber of clusters and their dimensions. 

Further work include the improvement of the two key steps of

R-SSC, namely the selection of the sets of anchor points and the

ummarization of the multilayer graph. For example, not choosing

he different sets of anchor points independently would be par-

icularly interesting in order to make the different layers as com-

lementary as possible. Also, studying the theoretical properties

f SR-SSC would be a particular promising direction of further re-

earch. Another direction of research is to improve the implemen-

ation of SR-SSC; in particular SR-SSC is especially amenable to par-

llelization as the constructions of the different layers in the mul-

ilayer graph are independent. 
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